DATA SHEET

PHOTOCOUPLER PS2702-1,PS2702-2,PS2702-4

HIGH ISOLATION VOLTAGE DARLINGTON TRANSISTOR SOP MULTI PHOTOCOUPLER SERIES -NEPOC[™] Series-

DESCRIPTION

EL

The PS2702-1, PS2702-2, PS2702-4, are optically coupled isolators containing a GaAs light emitting diode and an NPN silicon darlington-connected phototransistor.

Each is mounted in a plastic SOP (Small Out-line Package) for high density applications.

This package has shield effect to cut off ambient light.

FEATURES

- High current transfer ratio (CTR = 2 000 % TYP.)
- High isolation voltage (BV = 3 750 Vr.m.s.)
- Small and thin (SOP) package
- High-speed switching (tr, tr = 200 μ s TYP.)
- Ordering number of taping product (1-ch only): PS2702-1-E3, E4, F3, F4
- UL approved: File No. E72422 (S)
- VDE0884 approved (Option)

APPLICATIONS

- Hybrid IC
- ★ Telephone/FAX
- ★ FA/OA equipment
 - Programmable logic controllers

ORDERING INFORMATION

Part Number	Package	Safety Standard Approval
PS2702-1	4-pin SOP	Standard specification products
PS2702-2	8-pin SOP	• UL approved
PS2702-4	16-pin SOP	
PS2702-1-V	4-pin SOP	VDE0884 specification products (Option)
PS2702-2-V	8-pin SOP	
PS2702-4-V	16-pin SOP	

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PACKAGE DIMENSIONS (in millimeters)

Parameter		Symbol	Ratings			
			PS2702-1	PS2702-2, PS2702-4	Unit	
Diode	Forward Current (DC)	lF	50		mA	
	Reverse Voltage	VR	6.0		V	
	Power Dissipation Derating	⊿P _D /°C	0.8		mW/°C	
	Power Dissipation	PD	80		mW/ch	
	Peak Forward Current ^{*1}	IFP	1		А	
Transistor	Collector to Emitter Voltage	Vceo	40		V	
	Emitter to Collector Voltage	Veco	6		V	
	Collector Current	lc	200	160	mA/ch	
	Power Dissipation Derating	⊿Pc/°C	1.5	1.2	mW/°C	
	Power Dissipation	Pc	150	120	mW/ch	
Isolation Vo	bltage ^{*2}	BV	3 750		Vr.m.s.	
Operating Ambient Temperature		TA	–55 to +100		°C	
Storage Temperature		Tstg	–55 to +150		°C	

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

*1 PW = 100 μ s, Duty Cycle = 1 %

*2 AC voltage for 1 minute at $T_A = 25$ °C, RH = 60 % between input and output

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	IF = 5 mA		1.1	1.4	V
	Reverse Current	Ir	V _R = 5 V			5	μA
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		30		pF
Transistor	Collector to Emitter Current	ICEO	IF = 0 mA, Vce = 40 V			400	nA
Coupled	Current Transfer Ratio (Ic/IF) ^{*1}	CTR	IF = 1 mA, VcE = 2 V	200	2 000		%
	Collector Saturation Voltage	VCE (sat)	I⊧ = 1 mA, Ic = 2 mA			1.0	V
	Isolation Resistance	Ri-o	VI-O = 1 kVDC	10 ¹¹			Ω
	Isolation Capacitance	CI-O	V = 0 V, f = 1 MHz		0.4		pF
	Rise Time ^{*2}	tr	$V_{CC} = 5 \text{ V}, \text{ Ic} = 2 \text{ mA}, \text{ R}_{L} = 100 \Omega$		200		μs
	Fall Time ^{*2}	tr			200		

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

*1 CTR rank (only PS2702-1)

K: 2 000 to (%)

L: 700 to 3 400 (%)

M: 200 to 1 000 (%)

* *2 Test circuit for switching time

TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified)

Ambient Temperature TA (°C)

50

Ambient Temperature T_A (°C)

COLLECTOR TO EMITTER VOLTAGE

75

100

0

180 160

140

120

100

80

60

40

20

0

lc (mA)

Collector Current

25

COLLECTOR CURRENT vs.

IF = 5 mA

2 mA

0.5 mA

4

2

TRANSISTOR POWER DISSIPATION vs.

COLLECTOR CURRENT vs. COLLECTOR SATURATION VOLTAGE

Collector to Emitter Voltage VCE (V)

6

8

10

CURRENT TRANSFER RATIO vs. FORWARD CURRENT

FREQUENCY RESPONSE

LONG TERM CTR DEGRADATION 1.2**[** ~ CTR Degradation (Relative Value) 1.0 0.8 I_F = 1 mA, T_A = 25 °C $I_F = 1 \text{ mA}, \text{ } T_A = 60 \text{ }^\circ\text{C}$ 0.6 0.4 0.2 0.0L 10² 10³ 10⁴ 10⁵ 10⁶ Time (Hr)

Remark The graphs indicate nominal characteristics.

TAPING SPECIFICATIONS (in millimeters)

RECOMMENDED SOLDERING CONDITIONS

(1) Infrared reflow soldering

- Peak reflow temperature
 235 °C (package surface temperature)
- Time of temperature higher than 210 °C
- Number of reflows
- Flux

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.)

Recommended Temperature Profile of Infrared Reflow

30 seconds or less

Three

(2) Dip soldering

- Temperature 260 °C or below (molten solder temperature)
- Time
- 10 seconds or less
- Number of times One
- Flux

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.)

(3) Cautions

+

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT (VDE0884)

Parameter	Symbol	Speck	Unit
Application classification (DIN VDE 0109) for rated line voltages \leq 300 Vr.m.s. for rated line voltages \leq 600 Vr.m.s.		IV III	
Climatic test class (DIN IEC 68 Teil 1/09.80)		55/100/21	
Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $U_{pr} = 1.2 \times U_{IORM}, P_d < 5 pC$	Uiorm Upr	710 850	V _{peak} V _{peak}
Test voltage (partial discharge test, procedure b for random test) U_{pr} = 1.6 \times U_{IORM}, P_{d} < 5 pC	Upr	1 140	V _{peak}
Highest permissible overvoltage	Utr	6 000	Vpeak
Degree of pollution (DIN VDE 0109)		2	
Clearance distance		> 5	mm
Creepage distance		> 5	mm
Comparative tracking index (DIN IEC 112/VDE 0303 part 1)	CTI	175	
Material group (DIN VDE 0109)		lli a	
Storage temperature range	Tstg	-55 to +150	°C
Operating temperature range	TA	-55 to +100	°C
Isolation resistance, minimum value $V_{IO} = 500 \text{ V dc at } T_A = 25 ^{\circ}\text{C}$ $V_{IO} = 500 \text{ V dc at } T_A \text{ MAX. at least } 100 ^{\circ}\text{C}$	Ris MIN. Ris MIN.	10 ¹² 10 ¹¹	Ω Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current IF, Psi = 0) Power (output or total power dissipation) Isolation resistance	Tsi Isi Psi	150 200 300	°C mA mW
V_{IO} = 500 V dc at T _A = 175 °C (Tsi)	Ris MIN.	10 [°]	Ω

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

NEPOC is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.