

IMP809, IMP810

POWER MANAGEMENT

3-Pin Microcontroller Power Supply Supervisor

The IMP809/IMP810 are 3.0V, 3.3V and 5.0V power supply supervisor circuits optimized for low-power microprocessor (μ P), microcontroller (μ C) and digital systems. The IMP809/810 are improved drop-in replacements for the Maxim MAX809/810 and feature 60% lower supply current.

A reset signal is issued if the power supply voltage drops below a preset reset threshold and is asserted for at least 140ms after the supply has risen above the reset threshold. The IMP809 has an active-low RESET output that is guaranteed to be in the correct state for V_{CC} down to 1.1V. The IMP810 has an active-high RESET output. The reset comparator is designed to ignore fast transients on V_{CC}.

Low supply current makes the IMP809/IMP810 ideal for use in portable and battery operated equipment. The IMP809/IMP810 are available in a compact 3-pin SOT23 package.

Six voltage thresholds are available to support 3V to 5V systems:

Reset Threshold				
Suffix Voltage (V)				
L	4.63			
М	4.38			
J	4.00			
Т	3.08			
S	2.93			
R	2.63			

Block Diagrams

Key Features

- Improved Maxim MAX809/MAX810 replacement

 Lower supply current...6µA
 - 80% lower maximum supply current
- Monitor 5V, 3.3V and 3V supplies
- ◆ 140ms min. reset pulse width
- Active-low reset valid with 1.1V supply (IMP809)
- Small 3-pin SOT-23 package
- No external components
- ◆ Specified over full temperature range
 − −40°C to 105°C

Applications

- Embedded controllers
- Battery operated systems
- Intelligent instruments
- Wireless communication systems
- PDAs and handheld equipment

IMP809, IMP810

Pin Configuration

Ordering Information

Part Number ¹	Reset Threshold (V)	Temperature Range	Pin-Package	Package Marking ² (XX Lot Code)
IMP809 Active LOW I	Reset			
IMP809LEUR-T	4.63	-40°C to +105°C	3-SOT23	AAXX
IMP809MEUR-T	4.38	-40°C to +105°C	3-SOT23	ABXX
IMP809JEUR-T	4.00	-40°C to +105°C	3-SOT23	CWXX
IMP809TEUR-T	3.08	-40°C to +105°C	3-SOT23	ACXX
IMP809SEUR-T	2.93	-40°C to +105°C	3-SOT23	ADXX
IMP809REUR-T	2.63	-40°C to +105°C	3-SOT23	AFXX
IMP810 Active HIGH	Reset			
IMP810LEUR-T	4.63	-40°C to +105°C	3-SOT23	AGXX
IMP810MEUR-T	4.38	-40°C to +105°C	3-SOT23	AHXX
IMP810JEUR-T	4.00	-40°C to +105°C	3-SOT23	AIXX
IMP810TEUR-T	3.08	-40°C to +105°C	3-SOT23	AJXX
IMP810SEUR-T	2.93	-40°C to +105°C	3-SOT23	AKXX
IMP810REUR-T	2.63	-40°C to +105°C	3-SOT23	ALXX

Notes: 1. *Tape and Reel packaging is indicated by the -T designation.*

2. Devices may also be marked with full part number: 809L, 810M etc. XX refers to lot.

Related Products

	IMP809	IMP810	IMP811	IMP812
Max. Supply Current	15µA	15µA	15µA	15µA
Package Pins	3	3	4	4
Manual RESET input				
Package Type	SOT-23	SOT-23	SOT-143	SOT-143
Active-HIGH RESET output				
Active-LOW RESET output				

Absolute Maximum Ratings

Pin Terminal Voltage with Respect to Ground

V _{CC} 0.3V to 6.0V	
RESET, $\overline{\text{RESET}}$ 0.3V to (V _{CC} + 0.	.3V)
Input Current at V _{CC} 20mA	
Output Current: RESET, RESET	
Rate of Rise at V_{CC} 100V/µs	

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability

Power Dissipation ($T_A = 70^{\circ}C$)	
(Derate 4mW/°C above 70°C)	
Operating Temperature Range40°C to 1	.05°C
Storage Temperature Range65°C to 1	60°C
Lead Temperature (soldering, 10 sec) 300°C	

Electrical Characteristics

Unless otherwise noted V_{CC} is over the full voltage range, $T_A = -40^{\circ}$ C to 105°C. Typical values at $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V for L/M/J devices, $V_{CC} = 3.3$ V for T/S devices and $V_{CC} = 3$ V for R devices.

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Input Voltage (V _{CC}) Range	V _{CC}	$T_A = 0^{\circ}C \text{ to } 70^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 105^{\circ}C$		1.1 1.2		5.5 5.5	V
Supply Current	I _{CC}	$\begin{array}{l} T_A = -40^\circ C \ to \ 85^\circ C \\ T_A = -40^\circ C \ to \ 85^\circ C \\ T_A = 85^\circ C \ to \ 105^\circ C \\ T_A = 85^\circ C \ to \ 105^\circ C \end{array}$	$\begin{array}{l} V_{CC} < 5.5 V, \ L/M/J \\ V_{CC} < 3.6 V, \ R/S/T \\ V_{CC} < 5.5 V, \ L/M/J \\ V_{CC} < 3.6 V, \ R/S/T \end{array}$		9 6	15 10 25 20	μA
Reset Threshold	V _{TH}	L devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	4.56 4.50 4.40	4.63	4.70 4.75 4.86	V
		M devices	$ \begin{array}{l} T_A = 25^\circ C \\ T_A = -40^\circ C \text{ to } 85^\circ C \\ T_A = 85^\circ C \text{ to } 105^\circ C \end{array} $	4.31 4.25 4.16	4.38	4.45 4.50 4.56	
		J devices	$ \begin{array}{l} T_A = 25^\circ C \\ T_A = -40^\circ C \text{ to } 85^\circ C \\ T_A = 85^\circ C \text{ to } 105^\circ C \end{array} $	3.93 3.89 3.80	4.00	4.06 4.10 4.20	
		T devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	3.04 3.00 2.92	3.08	3.11 3.15 3.23	
		S devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	2.89 2.85 2.78	2.93	2.96 3.00 3.08	
		R devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	2.59 2.55 2.50	2.63	2.66 2.70 2.76	
Reset Threshold Stability			·		30		ppm/°C
V _{CC} to Reset Delay		$V_{CC} = V_{TH}$ to V_{TH} - 100	OmV		20		μs
Reset Active Timeout Period	V _{OL}	$T_A = -40^{\circ}$ C to 85° C $T_A = 85^{\circ}$ C to 105° C		140 100	240	560 840	ms
Low RESET Output Voltage (IMP809)	V _{OL}	V _{CC} = V _{TH} min., I _{SINK} =	= 1.2mA, IMP809R/S/T			0.3	V
			= 3.2mA, IMP809L/M/J	-		0.4 0.3	
High RESET Output Voltage (IMP809)	V _{OH}	$V_{CC} > 1.1V$, $I_{SINK} = 50\mu A$ $V_{CC} > V_{TH}$ max., $I_{SOURCE} = 500\mu A$, IMP809R/S/T		0.8V _{CC}		0.3	V
		$V_{CC} > V_{TH}$ max., $I_{SOURCE} = 500\mu$ A, $IMP809K/S/T$ $V_{CC} > V_{TH}$ max., $I_{SOURCE} = 800\mu$ A, $IMP809L/M/J$		V _{CC} -1.5			v
Low RESET Output Voltage (IMP810)	V _{OL}	$V_{CC} = V_{TH}$ max., $I_{SINK} = 1.2$ mA, IMP810R/S/T				0.3	V
		$V_{CC} = V_{TH}$ max., $I_{SINK} = 3.2$ mA, IMP810L/M/J				0.4	
High RESET Output Voltage (IMP810)	V _{OH}	$1.8V < V_{CC} < V_{TH} min.$., I _{SOURCE} = 150μΑ	0.8V _{CC}			V

Notes: 1. Production testing done at $T_A = 25$ °C. Over-temperature specifications guaranteed by design only. 2. RESET output is active LOW for the IMP809 and RESET output is active HIGH for the IMP810

Pin Descriptions

Pin Number	Name	Function
1	GND	Ground
2 (IMP809)	RESET	RESET is asserted LOW if V_{CC} falls below the reset threshold and remains LOW for the 240ms typical reset timeout period (140ms minimum) after V_{CC} exceeds the threshold.
2 (IMP810)	RESET	RESET is asserted HIGH if V_{CC} falls below the reset threshold and remains HIGH for the 240ms typical reset timeout period (140ms minimum) after V_{CC} exceeds the threshold.
3	V _{CC}	Power supply input voltage (3.0V, 3.3V, 5.0V)

Detailed Descriptions

Reset Timing

The reset signal is asserted–LOW for the IMP809 and HIGH for the IMP810–when the V_{CC} signal falls below the threshold trip voltage and remains asserted for 140ms minimum after the V_{CC} has risen above the threshold.

Figure 1. Reset Timing Diagram

Application Information

Negative V_{CC} Transients

The IMP809/810 protect μ Ps from brownouts and low V_{CC}. Short duration transients of 100mV amplitude and 20 μ s or less duration typically do not cause a false RESET.

Valid Reset with V_{CC} under 1.1V

To ensure logic inputs connected to the IMP809 $\overline{\text{RESET}}$ pin are in a known state when V_{CC} is under 1.1V, a 100k Ω pull-down

Figure 2. RESET Valid with V_{CC} Under 1.1V

Bi-directional Reset Pin Interfacing

The IMP809/810 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7k Ω resistor in series with the IMP809/810 reset output and the $\mu P/\mu C$ bi-directional reset pin.

resistor at $\overline{\text{RESET}}$ is needed. The value is not critical. A pull-up resistor to V_{CC} is needed with the IMP810.

Figure 3. RESET Valid with V_{CC} Under 1.1V

Figure 4. Bi-directional Reset Pin Interfacing

Package Dimensions

Plastic SOT-23 (3-Pin)

Inches			Millim	eters			
	Min Max		Min	Max			
	Plastic SOT-23 (3-Pin)						
Α	0.031	0.050	0.80	1.27			
A1	0.004	0.010	0.10	0.25			
В	0.015	0.020	0.37	0.51			
С	0.003	0.007	0.085	0.18			
D	0.110	0.120	2.80	3.04			
Е	0.047	0.055	1.20	1.40			
е	0.035	0.040	0.89	1.03			
e1	0.070	0.080	1.78	2.05			
Н	0.083	0.1039	2.10	2.64			
L 0.027 REF			0.069	REF			
S	0.018	0.024	0.45	0.60			

SOT-23 (3-Pin).eps

IMP, Inc. Corporate Headquarters 2830 N. First Street San Jose, CA 95134-2071 Tel: 408-432-9100 Tel: 800-438-3722 Fax: 408-434-0335 Fax-on-Demand: 1-800-249-1614 (USA) Fax-on-Demand: 1-303-575-6156 (International) e-mail: info@impinc.com http://www.impweb.com

The IMP logo is a registered trademark of IMP, Inc. All other company and product names are trademarks of their respective owners. © 1998 IMP, Inc. Printed in USA Preliminary Part No.: IMP809-810 Document Number: IMP809-6-6/98