Triple-Channel, Digital Isolators, Enhanced System-Level ESD Reliability # ADuM3300/ADuM3301 #### **FEATURES** Enhanced system-level ESD performance per IEC 61000-4-x Low power operation 5 V operation 2.0 mA per channel maximum @ 0 Mbps to 2 Mbps 4.1 mA per channel maximum @ 10 Mbps 36 mA per channel maximum @ 90 Mbps 3 V operation 1.0 mA per channel maximum @ 0 Mbps to 2 Mbps 2.8 mA per channel maximum @ 10 Mbps 17 mA per channel maximum @ 90 Mbps **Bidirectional communication** 3 V/5 V level translation High temperature operation: 105°C High data rate: dc to 90 Mbps (NRZ) Precise timing characteristics 2 ns maximum pulse-width distortion 2 ns maximum channel-to-channel matching High common-mode transient immunity: >25 kV/µs **Output enable function** 16-lead SOIC wide body, Pb-free package Safety and regulatory approvals UL recognition: 2500 V rms for 1 minute per UL 1577 CSA Component Acceptance Notice #5A **VDE Certificate of Conformity** DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01 DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 $V_{IORM} = 560 V peak$ #### **APPLICATIONS** General-purpose multichannel isolation SPI® interface/data converter isolation RS-232/RS-422/RS-485 transceivers Industrial field bus isolation #### **GENERAL DESCRIPTION** The ADuM330x¹ are 3-channel digital isolators based on Analog Devices' *i*Coupler® technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives, such as optocoupler devices. *i*Coupler devices remove the design difficulties commonly associated with optocouplers. Typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple *i*Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these *i*Coupler products. Furthermore, *i*Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates. The ADuM330x isolators provide three independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. The ADuM330x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions. In comparison to the ADuM130x isolators, the ADuM330x isolators contain various circuit and layout changes to provide increased capability relative to system-level IEC 61000-4-x testing (ESD, burst, surge). The precise capability in these tests for either the ADuM130x or ADuM330x products is strongly determined by the design and layout of the user's system. ¹ Protected by U.S. Patents 5,952,849 and 6,873,065. Other patents pending. #### **FUNCTIONAL BLOCK DIAGRAMS** Figure 1. ADuM3300 Functional Block Diagram Figure 2. ADuM3301 Functional Block Diagram Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. # **TABLE OF CONTENTS** | Features | 1 | |--|----| | Applications | 1 | | General Description | 1 | | Functional Block Diagrams | 1 | | Revision History | 2 | | Specifications | 3 | | Electrical Characteristics—5 V Operation | 3 | | Electrical Characteristics—3 V Operation | 5 | | Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V
Operation | 7 | | Package Characteristics | 10 | | Regulatory Information | 10 | | Insulation and Safety-Related Specifications | 10 | | DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation
Characteristics | 11 | | Recommended Operating Conditions11 | |---| | Absolute Maximum Ratings | | ESD Caution | | Pin Configurations and Function Descriptions | | Typical Performance Characteristics | | Application Information | | PC Board Layout | | System-Level ESD Considerations and Enhancements 17 | | Propagation Delay-Related Parameters17 | | DC Correctness and Magnetic Field Immunity | | Power Consumption | | Outline Dimensions | | Ordering Guide | #### **REVISION HISTORY** 3/06—Revision 0: Initial Version ## **SPECIFICATIONS** ## **ELECTRICAL CHARACTERISTICS—5 V OPERATION**¹ $4.5~V \le V_{DD1} \le 5.5~V$, $4.5~V \le V_{DD2} \le 5.5~V$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_A = 25$ °C, $V_{DD1} = V_{DD2} = 5~V$. Table 1. | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |--|--|--------------------------|-------|------|------|---| | DC SPECIFICATIONS | | | | | | | | Input Supply Current per Channel, Quiescent | I _{DDI (Q)} | | 0.66 | 0.97 | mA | | | Output Supply Current per Channel, Quiescent | I _{DDO (Q)} | | 0.39 | 0.55 | mA | | | ADuM3300, Total Supply Current, Four Channels ² | | | | | | | | DC to 2 Mbps | | | | | | | | V _{DD1} Supply Current | I _{DD1 (Q)} | | 2.4 | 3.3 | mA | DC to 1 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (Q)} | | 1.1 | 2.1 | mA | DC to 1 MHz logic signal freq. | | 10 Mbps (BRW and CRW Grades Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (10)} | | 7.0 | 8.1 | mA | 5 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (10)} | | 2.7 | 3.6 | mA | 5 MHz logic signal freq. | | 90 Mbps (CRW Grade Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (90)} | | 54 | 77 | mA | 45 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (90)} | | 15 | 31 | mA | 45 MHz logic signal freq. | | ADuM3301, Total Supply Current, Four Channels ² | | | | | | | | DC to 2 Mbps | | | | | | | | V _{DD1} Supply Current | I _{DD1 (Q)} | | 2.0 | 3.1 | mA | DC to 1 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (Q)} | | 1.6 | 2.3 | mA | DC to 1 MHz logic signal freq. | | 10 Mbps (BRW and CRW Grades Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (10)} | | 5.5 | 6.9 | mA | 5 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (10)} | | 3.9 | 5.4 | mA | 5 MHz logic signal freq. | | 90 Mbps (CRW Grade Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (90)} | | 41 | 57 | mA | 45 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (90)} | | 28 | 41 | mA | 45 MHz logic signal freq. | | For All Models | | | | | | | | Input Currents | I _{IA} , I _{IB} , I _{IC} ,
I _{ID} , I _{E1} , I _{E2} | -10 | +0.01 | +10 | μΑ | $\begin{split} 0 &\leq V_{IA}, V_{IB}, V_{IC}, V_{ID} \leq V_{DD1} \text{ or } V_{DD2}, \\ 0 &\leq V_{E1}, V_{E2} \leq V_{DD1} \text{ or } V_{DD2} \end{split}$ | | Logic High Input Threshold | V_{IH} , V_{EH} | 2.0 | | | V | | | Logic Low Input Threshold | V_{IL} , V_{EL} | | | 0.8 | V | | | Logic High Output Voltages | V _{OAH} , V _{OBH} , | $V_{DD1}, V_{DD2} - 0.1$ | 5.0 | | V | $I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$ | | | V_{OCH} , V_{ODH} | $V_{DD1}, V_{DD2} - 0.4$ | 4.8 | | V | $I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$ | | Logic Low Output Voltages | VOAL, VOBL, | | 0.0 | 0.1 | V | $I_{Ox} = 20 \mu A$, $V_{Ix} = V_{IxL}$ | | | V_{OCL} , V_{ODL} | | 0.04 | 0.1 | V | $I_{Ox} = 400 \ \mu A, V_{Ix} = V_{IxL}$ | | | | | 0.2 | 0.4 | V | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$ | | SWITCHING SPECIFICATIONS | | | | | | | | ADuM330xARW | | | | | | | | Minimum Pulse Width ³ | PW | | | 1000 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Maximum Data Rate ⁴ | | 1 | | | Mbps | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay⁵ | t _{PHL} , t _{PLH} | 50 | 65 | 100 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Pulse-Width Distortion, tplh - tphl 5 | PWD | | | 40 | ns | C _L = 15 pF, CMOS signal levels | | Propagation Delay Skew ⁶ | t _{PSK} | | | 50 | ns | C _L = 15 pF, CMOS signal levels | | Channel-to-Channel Matching ⁷ | t _{PSKCD/OD} | | | 50 | ns | C _L = 15 pF, CMOS signal levels | | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |---|-------------------------------------|-----|------|------|---------|--| | ADuM330xBRW | | | | | | | | Minimum Pulse Width ³ | PW | | | 100 | ns | $C_L = 15$ pF, CMOS signal levels | | Maximum Data Rate⁴ | | 10 | | | Mbps | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay⁵ | t _{PHL} , t _{PLH} | 20 | 32 | 50 | ns | $C_L = 15$ pF, CMOS signal levels | | Pulse-Width Distortion, tplh - tphl 5 | PWD | | | 3 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Change vs. Temperature | | | 5 | | ps/°C | $C_L = 15$ pF, CMOS signal levels | | Propagation Delay Skew ⁶ | t _{PSK} | | | 15 | ns | $C_L = 15$ pF, CMOS signal levels | | Channel-to-Channel Matching,
Codirectional Channels ⁷ | t _{PSKCD} | | | 3 | ns | C _L = 15 pF, CMOS signal levels | |
Channel-to-Channel Matching,
Opposing-Directional Channels ⁷ | t _{PSKOD} | | | 6 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | ADuM330xCRW | | | | | | | | Minimum Pulse Width ³ | PW | | 8.3 | 11.1 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Maximum Data Rate ⁴ | | 90 | 120 | | Mbps | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay ⁵ | t _{PHL} , t _{PLH} | 18 | 27 | 32 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Pulse-Width Distortion, t _{PLH} - t _{PHL} ⁵ | PWD | | 0.5 | 2 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Change vs. Temperature | | | 3 | | ps/°C | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay Skew ⁶ | t _{PSK} | | | 10 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Channel-to-Channel Matching,
Codirectional Channels ⁷ | t _{PSKCD} | | | 2 | ns | C _L = 15 pF, CMOS signal levels | | Channel-to-Channel Matching,
Opposing-Directional Channels ⁷ | t _{PSKOD} | | | 5 | ns | C _L = 15 pF, CMOS signal levels | | For All Models | | | | | | | | Output Disable Propagation Delay
(High/Low-to-High Impedance) | t _{PHZ} , t _{PLH} | | 6 | 8 | ns | C _L = 15 pF, CMOS signal levels | | Output Enable Propagation Delay
(High Impedance-to-High/Low) | t _{PZH} , t _{PZL} | | 6 | 8 | ns | C _L = 15 pF, CMOS signal levels | | Output Rise/Fall Time (10% to 90%) | t _R /t _F | | 2.5 | | ns | C _L = 15 pF, CMOS signal levels | | Common-Mode Transient Immunity
at Logic High Output ⁸ | CM _H | 25 | 35 | | kV/μs | $V_{Ix} = V_{DD1}/V_{DD2}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V | | Common-Mode Transient Immunity at Logic Low Output ⁸ | $ CM_L $ | 25 | 35 | | kV/μs | $V_{Ix} = 0 \text{ V}, V_{CM} = 1000 \text{ V},$
transient magnitude = 800 V | | Refresh Rate | f_r | | 1.2 | | Mbps | | | Input Dynamic Supply Current per Channel ⁹ | I _{DDI (D)} | | 0.20 | | mA/Mbps | | | Output Dynamic Supply Current per Channel ⁹ | I _{DDO (D)} | | 0.05 | | mA/Mbps | | ¹ All voltages are relative to their respective ground. ² The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total V_{DD1} and V_{DD2} supply currents as a function of data rate for ADuM3300/ADuM3301 channel configurations. ³ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed. ⁴ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed. ⁵ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the rising edge of the V_{Ox} signal. ⁶ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. ⁷ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier. $^{^8}$ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 > 0.8$ V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 < 0.8$ V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed. ⁹ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate. #### **ELECTRICAL CHARACTERISTICS—3 V OPERATION¹** $2.7~V \le V_{DD1} \le 3.6~V$, $2.7~V \le V_{DD2} \le 3.6~V$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_A = 25$ °C, $V_{DD1} = V_{DD2} = 3.0~V$. Table 2. | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |---|--|---|-------|------|------|---| | DC SPECIFICATIONS | | | | | | | | Input Supply Current per Channel, Quiescent | I _{DDI (Q)} | | 0.37 | 0.57 | mA | | | Output Supply Current per Channel, Quiescent | I _{DDO (Q)} | | 0.25 | 0.37 | mA | | | ADuM3300, Total Supply Current, Four Channels ² | | | | | | | | DC to 2 Mbps | | | | | | | | V _{DD1} Supply Current | I _{DD1 (Q)} | | 1.4 | 1.9 | mA | DC to 1 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (Q)} | | 0.7 | 1.2 | mA | DC to 1 MHz logic signal freq. | | 10 Mbps (BRW and CRW Grades Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (10)} | | 3.8 | 5.3 | mA | 5 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (10)} | | 1.5 | 2.1 | mA | 5 MHz logic signal freq. | | 90 Mbps (CRW Grade Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (90)} | | 28 | 41 | mA | 45 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (90)} | | 8.2 | 11 | mA | 45 MHz logic signal freq. | | ADuM3301, Total Supply Current, Four Channels ² | | | | | | | | DC to 2 Mbps | | | | | | | | V _{DD1} Supply Current | I _{DD1 (Q)} | | 1.1 | 1.6 | mA | DC to 1 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (Q)} | | 0.9 | 1.4 | mA | DC to 1 MHz logic signal freq. | | 10 Mbps (BRW and CRW Grades Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (10)} | | 3.0 | 4.1 | mA | 5 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (10)} | | 2.2 | 2.9 | mA | 5 MHz logic signal freq. | | 90 Mbps (CRW Grade Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (90)} | | 22 | 31 | mA | 45 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (90)} | | 15 | 21 | mA | 45 MHz logic signal freq. | | For All Models | | | | | | | | Input Currents | I _{IA} , I _{IB} , I _{IC} ,
I _{ID} , I _{E1} , I _{E2} | -10 | +0.01 | +10 | μΑ | $\begin{split} 0 & \leq V_{IA}, V_{IB}, V_{IC}, V_{ID} \leq V_{DD1} or V_{DD2}, \\ 0 & \leq V_{E1}, V_{E2} \leq V_{DD1} or V_{DD2} \end{split}$ | | Logic High Input Threshold | V _{IH} , V _{EH} | 1.6 | | | V | | | Logic Low Input Threshold | $V_{\text{IL}}, V_{\text{EL}}$ | | | 0.4 | V | | | Logic High Output Voltages | V _{OAH} , V _{OBH} , | V _{DD1} , V _{DD2} – 0.1 | 3.0 | | ٧ | $I_{Ox} = -20 \mu A$, $V_{Ix} = V_{IxH}$ | | | V_{OCH} , V_{ODH} | V _{DD1} , V _{DD2} – 0.4 | 2.8 | | V | $I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$ | | Logic Low Output Voltages | VOAL, VOBL, | | 0.0 | 0.1 | V | $I_{Ox} = 20 \mu A$, $V_{Ix} = V_{IxL}$ | | | Vocl, Vodl | | 0.04 | 0.1 | V | $I_{Ox} = 400 \ \mu A, V_{Ix} = V_{IxL}$ | | | | | 0.2 | 0.4 | V | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$ | | SWITCHING SPECIFICATIONS | | | | | | | | ADuM330xARW | | | | | | | | Minimum Pulse Width ³ | PW | | | 1000 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Maximum Data Rate ⁴ | | 1 | | | Mbps | C _L = 15 pF, CMOS signal levels | | Propagation Delay⁵ | t _{PHL} , t _{PLH} | 50 | 75 | 100 | ns . | C _L = 15 pF, CMOS signal levels | | Pulse-Width Distortion, t _{PLH} - t _{PHL} ⁵ | PWD | | | 40 | ns | C _L = 15 pF, CMOS signal levels | | Propagation Delay Skew ⁶ | t _{PSK} | | | 50 | ns | $C_L = 15$ pF, CMOS signal levels | | Channel-to-Channel Matching ⁷ | t _{PSKCD/OD} | | | 50 | ns | C _L = 15 pF, CMOS signal levels | | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |---|-------------------------------------|-----|------|------|---------|--| | ADuM330xBRW | | | | | | | | Minimum Pulse Width ³ | PW | | | 100 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Maximum Data Rate⁴ | | 10 | | | Mbps | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay⁵ | t _{PHL} , t _{PLH} | 20 | 38 | 50 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Pulse-Width Distortion, tplh - tphl 5 | PWD | | | 3 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Change vs. Temperature | | | 5 | | ps/°C | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay Skew ⁶ | t _{PSK} | | | 22 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Channel-to-Channel Matching,
Codirectional Channels ⁷ | t _{PSKCD} | | | 3 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Channel-to-Channel Matching, Opposing-Directional Channels ⁷ | t _{PSKOD} | | | 6 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | ADuM330xCRW | | | | | | | | Minimum Pulse Width ³ | PW | | 8.3 | 11.1 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Maximum Data Rate⁴ | | 90 | 120 | | Mbps | $C_L = 15 \text{ pF, CMOS
signal levels}$ | | Propagation Delay ⁵ | t _{PHL} , t _{PLH} | 20 | 34 | 45 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Pulse-Width Distortion, tplh - tphl 5 | PWD | | 0.5 | 2 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Change vs. Temperature | | | 3 | | ps/°C | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay Skew ⁶ | t _{PSK} | | | 16 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Channel-to-Channel Matching,
Codirectional Channels ⁷ | t PSKCD | | | 2 | ns | C _L = 15 pF, CMOS signal levels | | Channel-to-Channel Matching, Opposing-Directional Channels ⁷ | t _{PSKOD} | | | 5 | ns | C _L = 15 pF, CMOS signal levels | | For All Models | | | | | | | | Output Disable Propagation Delay
(High/Low-to-High Impedance) | t _{PHZ} , t _{PLH} | | 6 | 8 | ns | C _L = 15 pF, CMOS signal levels | | Output Enable Propagation Delay
(High Impedance-to-High/Low) | t _{PZH} , t _{PZL} | | 6 | 8 | ns | C _L = 15 pF, CMOS signal levels | | Output Rise/Fall Time (10% to 90%) | t _R /t _F | | 3 | | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Common-Mode Transient Immunity
at Logic High Output ⁸ | CM _H | 25 | 35 | | kV/μs | $V_{lx} = V_{DD1}/V_{DD2}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V | | Common-Mode Transient Immunity
at Logic Low Output ⁸ | CM _L | 25 | 35 | | kV/μs | $V_{lx} = 0 \text{ V}, V_{CM} = 1000 \text{ V},$
transient magnitude = 800 V | | Refresh Rate | f_{r} | 1 | 1.1 | | Mbps | | | Input Dynamic Supply Current per Channel ⁹ | I _{DDI (D)} | | 0.10 | | mA/Mbps | | | Output Dynamic Supply Current per Channel ⁹ | I _{DDO (D)} | 1 | 0.03 | | mA/Mbps | | ¹ All voltages are relative to their respective ground. ² The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total V_{DD1} and V_{DD2} supply currents as a function of data rate for ADuM3300/ADuM3301 channel configurations. ³ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed. ⁴ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed. ⁵ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the v_{Ox} signal. ⁶ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. ⁷ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier. $^{^8}$ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 > 0.8 \ V_{DD2}$. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 < 0.8 \ V$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed. ⁹ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate. #### ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION¹ 5 V/3 V operation: $4.5 \text{ V} \le V_{DD1} \le 5.5 \text{ V}$, $2.7 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$; 3 V/5 V operation: $2.7 \text{ V} \le V_{DD1} \le 3.6 \text{ V}$, $4.5 \text{ V} \le V_{DD2} \le 5.5 \text{ V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $T_A = 25^{\circ}\text{C}$; $V_{DD1} = 3.0 \text{ V}$, $V_{DD2} = 5 \text{ V}$ or $V_{DD1} = 5 \text{ V}$, $V_{DD2} = 3.0 \text{ V}$. Table 3. | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |--|-----------------------|-----|------|------|------|--------------------------------| | DC SPECIFICATIONS | | | | | | | | Input Supply Current per Channel, Quiescent | I _{DDI (Q)} | | | | | | | 5 V/3 V Operation | | | 0.66 | 0.97 | mA | | | 3 V/5 V Operation | | | 0.37 | 0.57 | mA | | | Output Supply Current per Channel, Quiescent | I _{DDO (Q)} | | | | | | | 5 V/3 V Operation | | | 0.25 | 0.37 | mA | | | 3 V/5 V Operation | | | 0.39 | 0.55 | mA | | | ADuM3300, Total Supply Current, Four Channels ² | | | | | | | | DC to 2 Mbps | | | | | | | | V _{DD1} Supply Current | I _{DD1 (Q)} | | | | | | | 5 V/3 V Operation | | | 2.4 | 3.3 | mA | DC to 1 MHz logic signal freq. | | 3 V/5 V Operation | | | 1.4 | 1.9 | mA | DC to 1 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (Q)} | | | | | | | 5 V/3 V Operation | | | 0.7 | 1.2 | mA | DC to 1 MHz logic signal freq. | | 3 V/5 V Operation | | | 1.1 | 2.1 | mA | DC to 1 MHz logic signal freq. | | 10 Mbps (BRW and CRW Grades Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (10)} | | | | | | | 5 V/3 V Operation | | | 7.0 | 8.1 | mA | 5 MHz logic signal freq. | | 3 V/5 V Operation | | | 3.8 | 5.3 | mA | 5 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (10)} | | | | | | | 5 V/3 V Operation | | | 1.5 | 2.1 | mA | 5 MHz logic signal freq. | | 3 V/5 V Operation | | | 2.7 | 3.6 | mA | 5 MHz logic signal freq. | | 90 Mbps (CRW Grade Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (90)} | | | | | | | 5 V/3 V Operation | | | 54 | 77 | mA | 45 MHz logic signal freq. | | 3 V/5 V Operation | | | 28 | 41 | mA | 45 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (90)} | | | | | | | 5 V/3 V Operation | | | 8.2 | 11 | mA | 45 MHz logic signal freq. | | 3 V/5 V Operation | | | 15 | 31 | mA | 45 MHz logic signal freq. | | ADuM3301, Total Supply Current, Four Channels ² | | | | | | | | DC to 2 Mbps | | | | | | | | V _{DD1} Supply Current | I _{DD1 (Q)} | | | | | | | 5 V/3 V Operation | | | 2.0 | 3.1 | mA | DC to 1 MHz logic signal freq. | | 3 V/5 V Operation | | | 1.1 | 1.6 | mA | DC to 1 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (Q)} | | | | | | | 5 V/3 V Operation | | | 0.9 | 1.4 | mA | DC to 1 MHz logic signal freq. | | 3 V/5 V Operation | | | 1.6 | 2.3 | mA | DC to 1 MHz logic signal freq. | | 10 Mbps (BRW and CRW Grades Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (10)} | | | | | | | 5 V/3 V Operation | | | 5.5 | 6.9 | mA | 5 MHz logic signal freq. | | 3 V/5 V Operation | | | 3.0 | 4.1 | mA | 5 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (10)} | | | | | | | 5 V/3 V Operation | | | 2.2 | 2.9 | mA | 5 MHz logic signal freq. | | 3 V/5 V Operation | | | 3.9 | 5.4 | mA | 5 MHz logic signal freq. | | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |--|---|--------------------------|-----------------------------|------|-------|--| | 90 Mbps (CRW Grade Only) | | | | | | | | V _{DD1} Supply Current | I _{DD1 (90)} | | | | | | | 5 V/3 V Operation | | | 41 | 57 | mA | 45 MHz logic signal freq. | | 3 V/5 V Operation | | | 22 | 31 | mA | 45 MHz logic signal freq. | | V _{DD2} Supply Current | I _{DD2 (90)} | | | | | | | 5 V/3 V Operation | | | 15 | 21 | mA | 45 MHz logic signal freq. | | 3 V/5 V Operation | | | 28 | 41 | mA | 45 MHz logic signal freq. | | For All Models | | | | | | | | Input Currents | IIA, IIB, IIC, | -10 | +0.01 | +10 | μΑ | $0 \le V_{IA}, V_{IB}, V_{IC}, V_{ID} \le V_{DD1} \text{ or } V_{DD2},$ | | • | I _{ID} , I _{E1} , I _{E2} | | | | ' | $0 \le V_{E1}, V_{E2} \le V_{DD1} \text{ or } V_{DD2}$ | | Logic High Input Threshold | VIH, VEH | | | | | | | 5 V/3 V Operation | | 2.0 | | | ٧ | | | 3 V/5 V Operation | | 1.6 | | | V | | | Logic Low Input Threshold | V_{IL}, V_{EL} | | | | | | | 5 V/3 V Operation | | | | 0.8 | V | | | 3 V/5 V Operation | | | | 0.4 | V | | | Logic High Output Voltages | VOAH, VOBH, | $V_{DD1}, V_{DD2} - 0.1$ | V_{DD1} , V_{DD2} | | V | $I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$ | | 3 3 1 3 | V_{OCH} , V_{ODH} | $V_{DD1}, V_{DD2} - 0.4$ | V_{DD1} , $V_{DD2} - 0.2$ | | V | $I_{Ox} = -4 \text{ mA}, V_{Ix} = V_{IxH}$ | | Logic Low Output Voltages | V _{OAL} , V _{OBL} , | , | 0.0 | 0.1 | V | $I_{Ox} = 20 \mu A, V_{Ix} = V_{IxL}$ | | .5 | V _{OCL} , V _{ODL} | | 0.04 | 0.1 | V | $I_{Ox} = 400 \mu A$, $V_{Ix} = V_{IxL}$ | | | | | 0.2 | 0.4 | V | $I_{Ox} = 4 \text{ mA}, V_{Ix} = V_{IxL}$ | | SWITCHING SPECIFICATIONS | | | | | | TOX TITLE | | ADuM330xARW | | | | | | | | Minimum Pulse Width ³ | PW | | | 1000 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Maximum Data Rate ⁴ | | 1 | | | Mbps | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay ⁵ | t _{PHL} , t _{PLH} | 50 | 70 | 100 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Pulse-Width Distortion, tplh -
tphl 5 | PWD | | . • | 40 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay Skew ⁶ | t _{PSK} | | | 50 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Channel-to-Channel Matching ⁷ | t _{PSKCD/OD} | | | 50 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | ADuM330xBRW | 41 SICE/OB | | | | 1 | CE 10 pt, citted signations | | Minimum Pulse Width ³ | PW | | | 100 | ns | $C_L = 15$ pF, CMOS signal levels | | Maximum Data Rate ⁴ | 1. ** | 10 | | 100 | Mbps | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay ⁵ | t _{PHL} , t _{PLH} | 15 | 35 | 50 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Pulse-Width Distortion, tplh - tphl 5 | PWD | | 33 | 3 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Change vs. Temperature | FVVD | | 5 | 3 | ps/°C | $C_L = 15 \text{ pF, CMOS signal levels}$
$C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay Skew ⁶ | t _{PSK} | | 5 | 22 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Channel-to-Channel Matching, | t _{PSKCD} | | | 3 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Codirectional Channels ⁷ | LPSKCD | | | 5 | 113 | CL = 13 pr, civios signal levels | | Channel-to-Channel Matching, | t _{PSKOD} | | | 6 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Opposing-Directional Channels ⁷ | ar shob | | | Ū | | at is properly and signal terms | | ADuM330xCRW | | | | | | | | Minimum Pulse Width ³ | PW | | 8.3 | 11.1 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Maximum Data Rate⁴ | | 90 | 120 | | Mbps | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay⁵ | t _{PHL} , t _{PLH} | 20 | 30 | 40 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Pulse-Width Distortion, t _{PLH} - t _{PHL} 5 | PWD | | 0.5 | 2 | ns | C _L = 15 pF, CMOS signal levels | | Change vs. Temperature | | 1 | 3 | | ps/°C | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Propagation Delay Skew ⁶ | t _{PSK} | | | 14 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Channel-to-Channel Matching, | t _{PSKCD} | | | 2 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Codirectional Channels ⁷ | | | | | | | | Channel-to-Channel Matching,
Opposing-Directional Channels ⁷ | t _{PSKOD} | | | 5 | ns | $C_L = 15 \text{ pF, CMOS signal levels}$ | | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |---|-------------------------------------|-----|------|-----|---------|--| | For All Models | | | | | | | | Output Disable Propagation Delay (High/Low-to-High Impedance) | t _{PHZ} , t _{PLH} | | 6 | 8 | ns | C _L = 15 pF, CMOS signal levels | | Output Enable Propagation Delay
(High Impedance-to-High/Low) | t _{PZH} , t _{PZL} | | 6 | 8 | ns | C _L = 15 pF, CMOS signal levels | | Output Rise/Fall Time (10% to 90%) | t _R /t _f | | | | | $C_L = 15 \text{ pF, CMOS signal levels}$ | | 5 V/3 V Operation | | | 3.0 | | ns | | | 3 V/5 V Operation | | | 2.5 | | ns | | | Common-Mode Transient Immunity
at Logic High Output ⁸ | CM _H | 25 | 35 | | kV/μs | $V_{lx} = V_{DD1}/V_{DD2}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V | | Common-Mode Transient Immunity
at Logic Low Output ⁸ | CM _L | 25 | 35 | | kV/μs | $V_{lx} = 0 \text{ V}, V_{CM} = 1000 \text{ V},$
transient magnitude = 800 V | | Refresh Rate | fr | | | | | | | 5 V/3 V Operation | | | 1.2 | | Mbps | | | 3 V/5 V Operation | | | 1.1 | | Mbps | | | Input Dynamic Supply Current per Channel ⁹ | I _{DDI (D)} | | | | | | | 5 V/3 V Operation | | | 0.20 | | mA/Mbps | | | 3 V/5 V Operation | | | 0.10 | | mA/Mbps | | | Output Dynamic Supply Current per Channel ⁹ | I _{DDO (D)} | | | | | | | 5 V/3 V Operation | | | 0.05 | | mA/Mbps | | | 3 V/5 V Operation | | | 0.03 | | mA/Mbps | | ¹ All voltages are relative to their respective ground. ² The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total V_{DD1} and V_{DD2} supply currents as a function of data rate for ADuM3300/ADuM3301/ADuM3302 channel configurations. ³ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed. ⁴ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed. ⁵ t_{PHL} propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. t_{PLH} propagation delay is measured from the 50% level of the rising edge of the V_{Ix} signal to the 50% level of the V_{Ox} signal. ⁶ t_{PSK} is the magnitude of the worst-case difference in t_{PHL} or t_{PLH} that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions. ⁷ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier. $^{^8}$ CM_H is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 > 0.8$ V_{DD2}. CM_L is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_0 < 0.8$ V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed. ⁹ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate. #### **PACKAGE CHARACTERISTICS** Table 4. | Parameter | Symbol | Min | Тур | Max | Unit | Test Conditions | |--|-----------------------|-----|------------------|-----|------|-----------------------------| | Resistance (Input to Output) ¹ | R _{I-O} | | 10 ¹² | | Ω | | | Capacitance (Input to Output) ¹ | CI-O | | 2.2 | | pF | f = 1 MHz | | Input Capacitance ² | Cı | | 4.0 | | pF | | | IC Junction-to-Case Thermal Resistance, Side 1 | θιςι | | 33 | | °C/W | Thermocouple located at | | IC Junction-to-Case Thermal Resistance, Side 2 | θ_{JCO} | | 28 | | °C/W | center of package underside | ¹ Device considered a 2-terminal device; Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14, Pin 15, and Pin 16 shorted together. #### **REGULATORY INFORMATION** The ADuM330x is approved by the organizations listed in Table 5. #### Table 5. | UL ¹ | CSA | VDE ² | |--|---|---| | Recognized under 1577 component recognition program ¹ | Approved under CSA Component Acceptance Notice #5A | Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01 ² | | Double/reinforced insulation,
2500 V rms isolation voltage | Reinforced insulation per
CSA 60950-1-03 and IEC 60950-1,
400 V rms maximum working voltage | Basic insulation, 560 V peak | | | | Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01, DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000 | | | | Reinforced insulation, 560 V peak | | File E214100 | File 205078 | File 2471900-4880-0001 | ¹ In accordance with UL1577, each ADuM330x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 µA). #### **INSULATION AND SAFETY-RELATED SPECIFICATIONS** Table 6. | Parameter | Symbol | Value | Unit | Conditions | |--|--------|-----------|-------|--| | Rated Dielectric Insulation Voltage | | 2500 | V rms | 1-minute duration | | Minimum External Air Gap (Clearance) | L(I01) | 7.7 min | mm | Measured from input terminals to output terminals, shortest distance through air | | Minimum External Tracking (Creepage) | L(I02) | 8.1 min | mm | Measured from input terminals to output terminals, shortest distance path along body | | Minimum Internal Gap (Internal Clearance) | | 0.017 min | mm | Insulation distance through insulation | | Tracking Resistance (Comparative Tracking Index) | CTI | >175 | V | DIN IEC 112/VDE 0303 Part 1 | | Isolation Group | | Illa | | Material Group (DIN VDE 0110, 1/89, Table 1) | ² Input capacitance is from any input data pin to ground. ² In accordance with DIN EN 60747-5-2, each ADuM330x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN EN 60747-5-2 approval. #### DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS Table 7. | Description | Symbol | Characteristic | Unit | |--|-----------------|----------------|--------| | Installation Classification
per DIN VDE 0110 | | | | | For Rated Mains Voltage ≤150 V rms | | I-IV | | | For Rated Mains Voltage ≤300 V rms | | I-III | | | For Rated Mains Voltage ≤400 V rms | | I-II | | | Climatic Classification | | 40/105/21 | | | Pollution Degree (DIN VDE 0110, Table 1) | | 2 | | | Maximum Working Insulation Voltage | V_{IORM} | 560 | V peak | | Input-to-Output Test Voltage, Method b1 | V_{PR} | 1050 | V peak | | $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test, $t_m = 1$ sec, Partial Discharge < 5 pC | | | | | Input-to-Output Test Voltage, Method a | V_{PR} | | | | After Environmental Tests Subgroup 1 | | 896 | V peak | | $V_{IORM} \times 1.6 = V_{PR}$, $t_m = 60$ sec, Partial Discharge < 5 pC | | | | | After Input and/or Safety Test Subgroup 2/3 | | 672 | V peak | | $V_{IORM} \times 1.2 = V_{PR}$, $t_m = 60$ sec, Partial Discharge < 5 pC | | | | | Highest Allowable Overvoltage (Transient Overvoltage, t _{TR} = 10 sec) | V_{TR} | 4000 | V peak | | Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure; also see Figure 3) | | | | | Case Temperature | Ts | 150 | °C | | Side 1 Current | I _{S1} | 265 | mA | | Side 2 Current | I _{S2} | 335 | mA | | Insulation Resistance at T_s , $V_{IO} = 500 \text{ V}$ | R_{S} | >109 | Ω | These isolators are suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The * marking on packages denotes DIN EN 60747-5-2 approval. Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN EN 60747-5-2 #### **RECOMMENDED OPERATING CONDITIONS** Table 8. | 1 4010 01 | | | | | |----------------------------------|-----------------------|-----|------|------| | Parameter | Symbol | Min | Max | Unit | | Operating Temperature | TA | -40 | +105 | °C | | Supply Voltages ¹ | V_{DD1} , V_{DD2} | 2.7 | 5.5 | ٧ | | Input Signal Rise and Fall Times | | | 1.0 | ms | ¹ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields. ### **ABSOLUTE MAXIMUM RATINGS** Ambient temperature = 25°C, unless otherwise noted. Table 9. | Parameter | Symbol | Min | Max | Unit | |---|---|------|-----------------|-------| | Storage Temperature | T _{ST} | -65 | +150 | °C | | Ambient Operating Temperature | TA | -40 | +105 | °C | | Supply Voltages ¹ | V_{DD1}, V_{DD2} | -0.5 | +7.0 | V | | Input Voltage ^{1, 2} | V_{IA} , V_{IB} , V_{IC} , V_{ID} , V_{E1} , V_{E2} | -0.5 | $V_{DDI} + 0.5$ | V | | Output Voltage ^{1, 2} | V_{OA} , V_{OB} , V_{OC} , V_{OD} | -0.5 | $V_{DDO} + 0.5$ | V | | Average Output Current per Pin ³ | | | | | | Side 1 | lo ₁ | -23 | +23 | mA | | Side 2 | l ₀₂ | -30 | +30 | mA | | Common-Mode Transients ⁴ | CM _H , CM ^L | -100 | +100 | kV/μs | ¹ All voltages are relative to their respective ground. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ESD CAUTION** ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Table 10. Truth Table (Positive Logic) | V _{IX} Input ¹ | V _{EX} Input ² | V _{DDI} State ¹ | V _{DDO} State ¹ | Vox Output ¹ | Notes | |------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------|---| | Н | H or NC | Powered | Powered | Н | | | L | H or NC | Powered | Powered | L | | | Χ | L | Powered | Powered | Z | | | Χ | H or NC | Unpowered | Powered | Н | Outputs return to the input state within 1 μ s of V_{DDI} power restoration. | | X | L | Unpowered | Powered | Z | | | X | X | Powered | Unpowered | | Outputs return to the input state within 1 μ s of V_{DDO} power restoration if V_{EX} state is H or NC. Outputs return to high impedance state within 8 ns of V_{DDO} power restoration if V_{EX} state is L. | $^{^{1}}$ V_{IX} and V_{OX} refer to the input and output signals of a given channel (A, B, or C). V_{EX} refers to the output enable signal on the same side as the V_{OX} outputs. V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of the given channel, respectively. ² V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section. ³ See Figure 3 for maximum rated current values for various temperatures. ⁴ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Ratings may cause latch-up or permanent damage. ² In noisy environments, connecting V_{EX} to an external logic high or low is recommended. ## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Figure 4. ADuM3300 Pin Configuration Table 11. ADuM3300 Pin Function Descriptions | Pin No. | Mnemonic | Function | |----------|------------------|---| | 1 | V_{DD1} | Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V. | | 2, 8 | GND₁ | Ground 1. Ground Reference for Isolator Side 1. | | 3 | VIA | Logic Input A. | | 4 | V _{IB} | Logic Input B. | | 5 | V _{IC} | Logic Input C. | | 6, 7, 11 | NC | No Connect. | | 9, 15 | GND ₂ | Ground 2. Ground Reference for Isolator Side 2. | | 10 | V _{E2} | Output Enable 2. Active high logic input. V_{OA} , V_{OB} , and V_{OC} outputs are enabled when V_{E2} is high or disconnected. V_{OA} , V_{OB} , and V_{OC} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended. | | 12 | Voc | Logic Output C. | | 13 | V _{OB} | Logic Output B. | | 14 | Voa | Logic Output A. | | 16 | V_{DD2} | Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V. | ^{*}Pin 2 and Pin 8 are internally connected, and connecting both to GND_1 is recommended. Pin 9 and Pin 15 are internally connected, and connecting both to GND_2 is recommended. In noisy environments, connecting output enables (Pin 7 for ADuM3301 and Pin 10 for all models) to an external logic high or low is recommended. Figure 5. ADuM3301 Pin Configuration Table 12. ADuM3301 Pin Function Descriptions | Pin No. | Mnemonic | Function | |---------|------------------|---| | 1 | V _{DD1} | Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V. | | 2, 8 | GND ₁ | Ground 1. Ground reference for Isolator Side 1. | | 3 | VIA | Logic Input A. | | 4 | V _{IB} | Logic Input B. | | 5 | Voc | Logic Output C. | | 6, 11 | NC | No Connect. | | 7 | V _{E1} | Output Enable 1. Active high logic input. V_{OC} output is enabled when V_{E1} is high or disconnected. V_{OC} is disabled when V_{E1} is low. In noisy environments, connecting V_{E1} to an external logic high or low is recommended. | | 9, 15 | GND ₂ | Ground 2. Ground reference for Isolator Side 2. | | 10 | V _{E2} | Output Enable 2. Active high logic input. V_{OA} and V_{OB} outputs are enabled when V_{E2} is high or disconnected. V_{OA} and V_{OB} outputs are disabled when V_{E2} is low. In noisy environments, connecting V_{E2} to an external logic high or low is recommended. | | 12 | V _{IC} | Logic Input C. | | 13 | V _{OB} | Logic Output B. | | 14 | V _{OA} | Logic Output A. | | 16 | V_{DD2} | Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V. | ^{*}Pin 2 and Pin 8 are internally connected, and connecting both to GND_1 is recommended. Pin 9 and Pin 15 are internally connected, and connecting both to GND_2 is recommended. In noisy environments, connecting output enables (Pin 7 for ADuM3301 and Pin 10 for all models) to an external logic high or low is recommended. ## TYPICAL PERFORMANCE CHARACTERISTICS Figure 6. Typical Input Supply Current per Channel vs. Data Rate (No Load) Figure 7. Typical Output Supply Current per Channel vs. Data Rate (No Load) Figure 8. Typical Output Supply Current per Channel vs. Data Rate (15 pF Output Load) Figure 9. Typical ADuM3300 V_{DD1} Supply Current vs. Data Rate for 5 V and 3 V Operation Figure 10. Typical ADuM3300 $V_{\rm DD2}$ Supply Current vs. Data Rate for 5 V and 3 V Operation Figure 11. Typical ADuM3301 V_{DD1} Supply Current vs. Data Rate for 5 V and 3 V Operation Figure 12. Typical ADuM3301 $V_{\rm DD2}$ Supply Current vs. Data Rate for 5 V and 3 V Operation Figure 13. Propagation Delay vs. Temperature, C Grade ## APPLICATION INFORMATION ####
PC BOARD LAYOUT The ADuM330x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 14). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{\rm DD1}$ and between Pin 15 and Pin 16 for $V_{\rm DD2}$. The capacitor value should be between 0.01 μF and 0.1 μF . The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should also be considered unless the ground pair on each package side is connected close to the package. Figure 14. Recommended Printed Circuit Board Layout In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the device's Absolute Maximum Ratings, thereby leading to latch-up or permanent damage. # SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design which varies widely by application. The ADuM330x incorporate many enhancements to make ESD reliability less dependent on system design. The enhancements include: - ESD protection cells added to all input/output interfaces. - Key metal trace resistances reduced using wider geometry and paralleling of lines with vias. - The SCR effect inherent in CMOS devices minimized by use of guarding and isolation technique between PMOS and NMOS devices. - Areas of high electric field concentration eliminated using 45° corners on metal traces. - Supply pin overvoltage prevented with larger ESD clamps between each supply pin and its respective ground. While the ADuM320x improve system-level ESD reliability, they are no substitute for a robust system-level design. See Application Note AN-793 ESD/Latch-Up Considerations with *i*Coupler Isolation Products for detailed recommendations on board layout and system-level design. #### PROPAGATION DELAY-RELATED PARAMETERS Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high. Figure 15. Propagation Delay Parameters Pulse-width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved. Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM330x component. Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM330x components operating under the same conditions. #### DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY Positive and negative logic transitions at the isolator input cause narrow (~1 ns) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than 2 μs , a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about 5 μs , the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 10) by the watchdog timer circuit. The limitation on the ADuM330x's magnetic field immunity is set by the condition in which induced voltage in the transformer's receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM330x is examined because it represents the most susceptible mode of operation. The pulses at the transformer output have an amplitude greater than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by $$V = (-d\beta/dt)\sum \prod r_n^2; n = 1, 2, ..., N$$ where: β is magnetic flux density (gauss). *N* is the number of turns in the receiving coil. r_n is the radius of the nth turn in the receiving coil (cm). Given the geometry of the receiving coil in the ADuM330x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 16. Figure 16. Maximum Allowable External Magnetic Flux Density For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder. The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM330x transformers. Figure 17 expresses these allowable current magnitudes as a function of frequency for selected distances. The ADuM330x is extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component (see Figure 17). For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM330x to affect the component's operation. Figure 17. Maximum Allowable Current for Various Current-to-ADuM330x Spacings Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce error voltages sufficiently large enough to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility. #### **POWER CONSUMPTION** The supply current at a given channel of the ADuM330x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load. For each input channel, the supply current is given by $$I_{DDI} = I_{DDI(Q)}$$ $f \le 0.5 f_r$ $$I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)}$$ $f > 0.5 f_r$ For each output channel, the supply current is given by $$\begin{split} I_{DDO} &= I_{DDO\,(Q)} & f \leq 0.5\,f_r \\ I_{DDO} &= \left(I_{DDO\,(D)} + \left(0.5 \times 10^{-3}\right) \times C_L \times V_{DDO}\right) \times \left(2f - f_r\right) + I_{DDO\,(Q)} \\ & f > 0.5\,f_r \end{split}$$ #### where: $I_{DDI(D)}$, $I_{DDO(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps). C_L is the output load capacitance (pF). V_{DDO} is the output supply voltage (V). *f* is the input logic signal frequency (MHz); it is half of the input data rate expressed in units of Mbps. f_r is the input stage refresh rate (Mbps). $I_{DDI(Q)}$, $I_{DDO(Q)}$ are the specified input and output quiescent supply currents (mA). To calculate the total $I_{\rm DD1}$ and $I_{\rm DD2}$ supply current, the supply currents for each input and output channel corresponding to $V_{\rm DD1}$ and $V_{\rm DD2}$ are calculated and totaled. Figure 6 provides perchannel input supply current as a function of data rate. Figure 7 and Figure 8 provide per-channel output supply current as a function of data rate for an unloaded output condition and for a 15 pF output condition, respectively. Figure 9 through Figure 12 provide total $I_{\rm DD1}$ and $I_{\rm DD2}$ supply current as a function of data rate for ADuM3300/ADuM3301 channel configurations. ## **OUTLINE DIMENSIONS** COMPLIANT TO JEDEC STANDARDS MS-013-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 18. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches) #### **ORDERING GUIDE** | Model | Temperature Range (°C) | Number of Inputs, V _{DD1} Side | Number of Inputs, VDD2 Side | Maximum
Data Rate
(Mbps) | Maximum
Propagation
Delay, 5 V (ns) | Maximum
Pulse-Width
Distortion (ns) | Package
Option ¹ | |------------------------------|------------------------|---|-----------------------------|--------------------------------|---|---|--------------------------------| | ADuM3300ARWZ ^{2, 3} | -40 to +105 | 3 | 0 | 1 | 100 | 40 | RW-16 | | ADuM3300BRWZ ^{2,3} | -40 to +105 | 3 | 0 | 10 | 50 | 3 | RW-16 | | ADuM3300CRWZ ^{2, 3} | -40 to +105 | 3 | 0 | 90 | 32 | 2 | RW-16 | | ADuM3301ARWZ ^{2, 3} | -40 to +105 | 2 | 1 | 1 | 100 | 40 | RW-16 | | ADuM3301BRWZ ^{2,3} | -40 to +105 | 2 | 1 | 10 | 50 | 3 | RW-16 | | ADuM3301CRWZ ^{2, 3} | -40 to +105 | 2 | 1 | 90 | 32 | 2 | RW-16 | $^{^{1}}$ RW-16 = 16-lead wide body SOIC. ² Tape and reel are available. The addition of an "-RL" suffix designates a 13" (1,000 units) tape and reel option. $^{^{3}}$ Z = Pb-free part.