INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

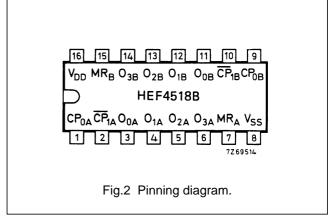
HEF4518B MSI Dual BCD counter

Product specification
File under Integrated Circuits, IC04

January 1995

Dual BCD counter

HEF4518B MSI


DESCRIPTION

The HEF4518B is a dual 4-bit internally synchronous BCD counter. The counter has an active HIGH clock input (CP₀) and an active LOW clock input (\overline{CP}_1), buffered outputs from all four bit positions (O₀ to O₃) and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP₀ input if \overline{CP}_1 is HIGH or the HIGH to

LOW transition of the \overline{CP}_1 input if CP_0 is LOW. Either CP_0 or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O_0 to O_3 = LOW) independent of CP_0 , \overline{CP}_1 .

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

HEF4518BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4518BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4518BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

 $\begin{array}{ll} \text{CP}_{0\text{A}},\,\text{CP}_{0\text{B}} & \text{clock inputs (L to H triggered)} \\ \hline \text{CP}_{1\text{A}},\,\overline{\text{CP}}_{1\text{B}} & \text{clock inputs (H to L triggered)} \\ \end{array}$

MR_A, MR_B master reset inputs

 O_{0A} to O_{3A} outputs O_{0B} to O_{3B} outputs

APPLICATION INFORMATION

Some examples of applications for the HEF4518B are:

- · Multistage synchronous counting.
- · Multistage asynchronous counting.
- Frequency dividers.

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

7Z75398.2

Fig.3 Logic diagram (one counter).

FUNCTION TABLE

CP ₀	CP ₁	MR	MODE	
	Н	L	counter advances	
L	\	L	counter advances	
~	X	L	no change	
X		L	no change	
_	L	L	no change	
Н	\ \	L	no change	
X	X	Н	O_0 to $O_3 = LOW$	

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

→ = negative-going transition

HEF4518B <u>S</u>N

Product specification

Philips Semiconductors Product specification

Dual BCD counter

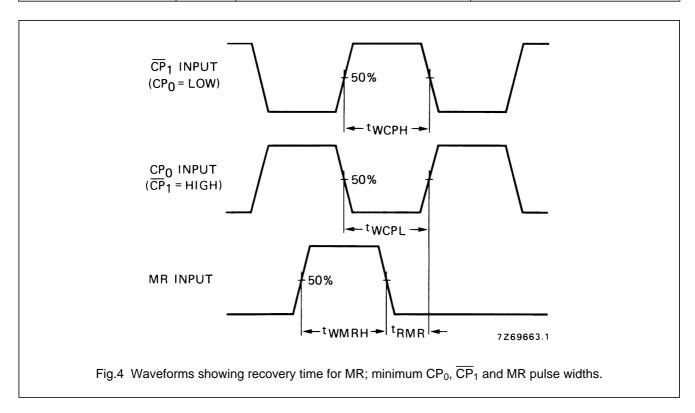
HEF4518B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
CP_0 , $\overline{CP}_1 \rightarrow O_n$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_n$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Minimum CP ₀	5		60	30		ns	
pulse width; LOW	10	t _{WCPL}	30	15		ns	
	15		20	10		ns	
Minimum CP ₁	5		60	30		ns	
pulse width; HIGH	10	t _{WCPH}	30	15		ns	
	15		20	10		ns	
Minimum MR	5		30	15		ns	
pulse width; HIGH	10	t _{WMRH}	20	10		ns	
	15		16	8		ns	
Recovery time	5		50	25		ns	
for MR	10	t _{RMR}	30	15		ns	see also waveforms Figs 4 and 5
	15		20	10		ns	Figs 4 and 5
Set-up times	5		50	25		ns	
$CP_0 \rightarrow \overline{CP}_1$	10	t _{su}	30	15		ns	
	15		20	10		ns	
	5		50	25		ns	
$\overline{CP}_1 \rightarrow CP_0$	10	t _{su}	30	15		ns	
	15		20	10		ns	
Maximum clock	5		8	16		MHz	
pulse frequency	10	f _{max}	15	30		MHz	
	15		20	40		MHz	

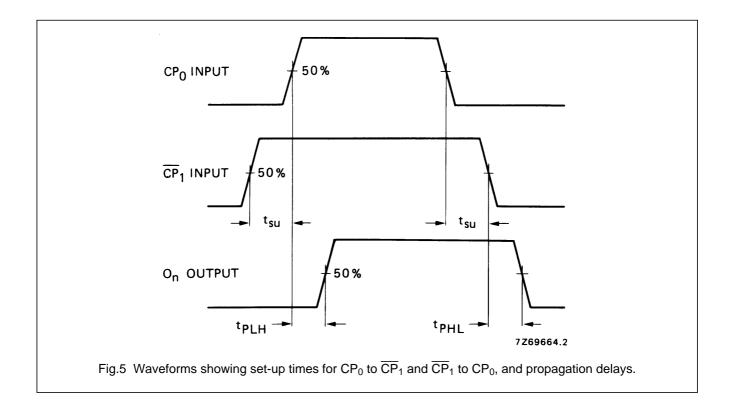
Philips Semiconductors Product specification


Dual BCD counter

HEF4518B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns


	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$750f_i + \sum (f_oC_L) \times V_{DD}^2$	where
dissipation per	10	$3300 f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	8000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification


Dual BCD counter

HEF4518B MSI

HEF4518B

NSI

January 1995